Toric Modular Forms and Nonvanishing of L-functions

نویسنده

  • LEV A. BORISOV
چکیده

In a previous paper [1], we defined the space of toric forms T (l), and showed that it is a finitely generated subring of the holomorphic modular forms of integral weight on the congruence group Γ1(l). In this article we prove the following theorem: modulo Eisenstein series, the weight two toric forms coincide exactly with the vector space generated by all cusp eigenforms f such that L(f, 1) 6= 0. The proof uses work of Merel, and involves an explicit computation of the intersection pairing on Manin symbols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Toric Varieties and Modular Forms

Let M∗(l) = M∗(Γ1(l),C) be the ring of holomorphic modular forms on Γ1(l). In this talk we use the combinatorics of complete toric varieties to construct a subring T∗(l) ⊂ M∗(l), the subring of toric modular forms (§2). This is a natural subring, in the sense that it behaves nicely with respect to natural operations on M∗(l) (namely, Hecke operators, Fricke involution, and the theory of oldform...

متن کامل

Arithmetic Theta Lifts and the Arithmetic Gan–gross–prasad Conjecture for Unitary Groups

In 1980s, Gross–Zagier [GZ86] established a formula that relates the Neron–Tate height of Heegner points on modular curves to the central derivative of certain L-functions associated to modular forms. Around the same time, Waldspurger proved a formula, relating toric periods of modular forms to the central value of certain L-functions. Gross put both of these formula in the framework of represe...

متن کامل

A Nonvanishing Theorem for Derivatives of Automorphic L-functions with Applications to Elliptic Curves

1. A brief history of nonvanishing theorems. The nonvanishing of a Dirichlet series 2 a(n)n~\ or the existence of a pole, at a particular value of s often has applications to arithmetic. Euler gave the first example of this, showing that the infinitude of the primes follows from the pole of Ç(s) at s = 1. A deep refinement was given by Dirichlet, whose theorem on primes in an arithmetic progres...

متن کامل

Nonvanishing of L-functions of Cusp Forms inside the Critical Strip

A theorem of W. Kohnen states that the generalized Riemann hypothesis (GRH) holds on an average for holomorphic cusp forms on the upper half plane for the full modular group SL2(Z). In this article we prove a couple of generalizations of this theorem of Kohnen that the GRH holds on an average for holomorphic cusp forms on the upper half plane for arbitrary level, weight and primitive nebentypus...

متن کامل

Growth and Nonvanishing of Restricted Siegel Modular Forms Arising as Saito-kurokawa Lifts

We study the analytic behavior of the restriction of a Siegel modular form to H × H in the case that the Siegel form is a Saito-Kurokawa lift. A formula of Ichino links this behavior to a family of GL3 ×GL2 L-functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008